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Markov chain Monte Carlo in conditionally Gaussian state 
space models 

BY C. K. CARTER AND R. KOHN 
Australia~z Graduate School of Management, University of New South Wales, Kensington, 

N.S.W., Australia, 2052 

SUMMARY 

A Bayesian analysis is given for a state space model with errors that are finite mixtures 
of normals and with coefficients that can assume a finite number of different values. A 
sequence of indicator variables determines which components the errors belong to and 
the values of the coefficients. The computation is carried out using Markov chain Monte 
Carlo, with the indicator variables generated without conditioning on the states. Previous 
approaches use the Gibbs sampler to generate the indicator variables conditional on the 
states. In many problems, however, there is a strong dependence between the indicator 
variables and the states causing the Gibbs sampler to converge unacceptably slowly, or 
even not to converge at all. The new sampler is implemented in O(n)operations, where n 
is the sample size, permitting an exact Bayesian analysis of problems that previously had 
no computationally tractable solution. We show empirically that the new sampler can be 
much more efficient than previous approaches, and illustrate its applicability to robust 
nonparametric regression with discontinuities and to a time series change point problem. 

Some key words: Change point problem; Kalman filter; Mixture of normals; Nonparametric regression; Outlier; 
Time series. 

1. INTRODUCTION 

Linear Gaussian state space models are used extensively, with unknown parameters 
usually estimated by maximum likelihood: Wecker & Ansley (1983), Harvey (1989, Ch. 3). 
However, many time series and nonparametric regression applications, such as change 
point problems, outlier detection and switching regression, require the full generality of 
the conditionally Gaussian model: Harrison & Stevens (1976), Shumway & Stoffer (l991), 
West & Harrison (1989, Ch. 12), Gordon & Smith (1990). The presence of a large number 
of indicator variables makes it difficult to estimate conditionally Gaussian models using 
maximum likelihood, and a Bayesian approach using Markov chain Monte Carlo appears 
more tractable. We propose a new sampler, which is used to estimate an unknown function 
nonparametrically when there are jumps in the function and outliers in the observations; 
it is also applied to a time series change point problem previously discussed by Gordon 
& Smith (1990). For the first example the Gibbs sampler works poorly, and for the second 
it does not work at all. 

The conditionally Gaussian model can also be applied to more general error distri- 
butions by approximating them by a mixture of normals. For example, Shephard (1994) 
discusses a changing variance model with observations that have a log chi-squared distri- 
bution with one degree of freedom, which he approximates by a mixture of normals. 



Section 2 describes the model and the new sampling scheme. Section 3 applies the 
sampler to robust nonparametric regression with discontinuities and 8 4 to a time series 
change point problem. Section 5 shows how to generate the indicator variables in O(n) 
operations. The basis for generating the indicator variables from reduced conditionals is 
a sampling scheme introduced in Appendix 1 which groups variables in a more flexible 
way than the Gibbs sampler and is useful for general Bayesian analysis. Appendix 2 shows 
that the new sampler converges to the correct posterior distribution. 

2. MODEL,PRIOR ASSUMPTIONS AND SAMPLING SCHEMES 


The model is 


the observations yi are scalar and the state vector xi is m x 1. The errors ei are independent 
N(0, 02) and the errors ui are independent N(0, z21,,). The coefficients hi, y,, Fiand Ti are 
determined by the discrete variable K,. To define m' uniquely, we assume that Ti has full 
column rank for at least one value of K,. 

The following notation is used: Y:=(y,,. . . ,y,)' is the vector of observations, 
X:=(x;, . . . ,x;)' is the total state vector, and K:=(K,, . . . ,K,). Let p(K) be the distri- 
bution of K and X:={K :p(K) >0) the state space of K. We make the following three 
assumptions. 

Assumption 1. A priori, 02, z2 and K are independent, with the priors for 02 and z2 
inverse gamma. The prior distribution for K is a Markov chain with known transition 
probabilities. 

Assumption 2. Given K, and z2, the distribution of x, is Gaussian. 

In many applications the distribution of x, is partially diffuse. For this case, the sampler 
and algorithm are similar to those given below, except that the modified Kalman filter of 
Ansley & Kohn (1990) is used to carry out the computation, instead of the Kalman filter. 

Assumption 3. The density p(YI K, 02, z2) >0, for all K E X ,  o2 >0 and z2 >0. 

We propose the following sampler for generating X, K, 02 and z2. Unlike the Gibbs 
sampler, described below, the variable Ki is generated without conditioning on X. 
Appendix 1 explains that this is equivalent to generating X and Ki as a block, without 
the necessity actually to generate X. Let gi:=h:xi and G:=(g,, . . . ,g,)'. 

Sampling Scheme 2.1. Generate from the conditional distributions: 
(i) p(z21 Y, G, K, 02), which simplifies to I G, K);  

(ii) p(KiI Y, Kj, j + i, 02, z2) for i = 1, . . . ,n; 
(iii) p(X I Y, K, 02, z2); 
(iv) p(021 Y, X, K, z2), which simplifies to p(02 I Y, G, K) .  

Steps (i) and (iv) are carried out as in Carter & Kohn (1994, 8 3), who show that 
p(02I G, K )  and p(z2 I Y, G, K )  are inverse gamma. The total state vector X is generated as 
a block as in Carter & Kohn (1994) and Friihwirth-Schnatter (1994); for some models 
the algorithm in de Jong & Shephard (1995) is more efficient. The variables Ki are 
generated from reduced conditionals as in 8 5. 

The next lemma gives necessary and sufficient conditions for Sampling Scheme 2.1 to 
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converge. To state the convergence conditions we need to define the following sampling 
scheme on K. 

Sampling Scheme K. Generate from p(KiI Kj, j += i), for i = 1, . . . ,n. 

LEMMA2.1. Sampling Scheme 2.1 has invariant distributio~zp(X, K, 02,22 1 Y). It is aperi-
odic if and only if Sampling Scheme K is aperiodic, and is irreducible if and only if Sampling 
Scheme K is irreducible. 

ProoJ: Invariance is shown in Appendix 1, and aperiodicity and irreducibility in 
Appendix 2. 

The block Gibbs sampler for (2.1) is described by the following sampling scheme. 

Sampling Scheme 2.2 (Gibbs sampler). Generate from: 
(i) p(X I Y, K, 02,z2); 

(ii) p(K I Y, X, 02,2'); 
(iii) p(02,z2,1 Y, X, K) ,  which simplifies to p(021 Y, X, K)p(z2(X ,K) .  

Carter & Kohn (1994) propose the following modification of the Gibbs sampler which 
generates z2 more efficiently by conditioning z2 on G and K instead of X and K and 
requires minor extra computation. Because of its extra efficiency, we use it instead of the 
Gibbs sampler in the empirical comparisons with Sampling Scheme 2.1. 

Sampling Scheme 2.3. Generate from the conditional distributions: 
(i) p(z21 Y, G, K),  which simplifies to p(z2I G, K); 

(ii) p(X I Y, K, 02,z2); 
(iii) p(021 Y, X, K, z2),which simplifies to p(02I Y, G, K) .  

The next lemma gives conditions for Sampling Schemes 2.2 and 2-3 to converge. Its 
proof is similar to that of Lemma 2.1 and is omitted. 

LEMMA2.2. Sampling Schemes 2.2 and 2.3 are i~zvaria~ztto the distribution 
p(X, K, 02,2'1 Y). They are irreducible and aperiodic if and only if y t  >0 and Ti is of full 
column rank for all values of Ki ,  and all i. 

Remark 2.1. Suppose the Ki are a priori independent. Then they are also indepen-
dent conditionally on the states, which means that generating the Ki  simultaneously 
from p(KI Y,X, 02,z2) is equivalent to generating them one at a time using 
p(KiI Y, X, Kj,,, 02,z2). Thus, if the Ki are independent, the theoretical results in Liu, 
Kong & Wong (1994) suggest that Sampling Scheme 2.1 is likely to converge faster than 
Sampling Schemes 2.2 and 2.3, as the Ki are conditioned on less information. 

We also note that if the Ki are a priori independent then Sampling Scheme 2.1 is 
irreducible if Sampling Schemes 2.2 and 2.3 are irreducible. 

Remark 2.2. Sampling Scheme 2.1 can be extended in a straightforward way to allow 
the coefficients hi, yi, Fi and Ti to depend on an unknown parameter vector which is also 
generated. 

3. ROBUSTNONPARAMETRIC REGRESSION WITH DISCONTINUITIES 

A robust nonparametric Bayesian approach is now presented for estimating a regression 
function, assumed smooth except for a small number of discontinuities in either the func-



tion or its first derivative; the points of discontinuity are allowed to be unknown. Our 
approach has the following properties: 

(i) it provides a good estimate of the smooth part of the regression function; 
(ii) it detects the jump points and obtains the posterior probability of a jump at any 

given point, enabling discrimination between a real and spurious jump at any 
given point; 

(iii) it allows for outliers in the observations so as not to confound outliers with jumps 
in the regression function. 

Non-Bayesian approaches to nonparametric regression with discontinuities, together with 
motivating examples, are given by McDonald & Owen (1986) and Miiller (1992). Their 
approaches satisfy (i), but not (ii) and (iii). 

Consider observations generated by the regression model 

yi =f (ti)+~ i i ' e ,  (i = 1, . . . ,n), 

where f( .)  is the unknown regression function. We take, without loss of generality, 0 = 

to< t, b t2b . . . bt,, and let ai = ti - ti-,. The errors ei are assumed independent 
N(0,02). For ordinary observations Kli = 1, whereas for outliers Kli is taken large. Wahba 
(1978) gives a prior for a smooth regression function; this prior can be expressed in state 
space form as in Carter & Kohn (1994) with state vector xi = (f(ti), f(')(ti))'. Using 
Wahba's prior, the posterior mean of the regression function is a cubic smoothing spline. 
We adapt Wahba's prior to allow for jumps in the function and its first derivative by 
expressing it in the state space form (2.1) with hi = (1, 0)', riri=KZiUi, 

The errors in the state transition equation are ui -N(0, z212). The variable K,, = 1 when 
there is no jump at ti, and K,, is large if there is a jump. As in Wahba (1978), a diffuse 
prior is placed on the initial conditions, that is x,=(f(t,), f ("(t,))' -N(0, cl,), with c -,co. 

Let Ki = (K,,, KZi) with the prior for Ki  given in Table 1. The Ki are assumed to be 
independent and, to simplify the computation, we impose the restriction that an outlier 
and a jump cannot occur simultaneously. To complete the Bayesian specification of the 
model, o2 and 22 have the improper priors p(02) K 1/02 exp(-P,/02), with P, = lo-'', and 
p(z2)cc 1/z2. It is readily checked that all posterior distributions are proper. 

Table 1. Distribution of Ki 

( j ,k)  ( 1 , )  ( 0 )  ( io2, i )  (1,io) ( i , io2)  ( i , io3)  ( i , io4)  ( i , io5)  ( i , io6)  

pr{K,=(j,k)') 0.95 0.00625 0.00625 0.00625 0.00625 0.00625 0.00625 0.00625 0.00625 

Lemmas 2.1 and 2.2 imply that Sampling Schemes 2.1, 2.2 and 2.3 are irreducible and 
aperiodic and hence converge to the posterior distribution. Sampling Schemes 2.1 and 2.3 
are now empirically compared for data generated from the model yi =f(t i)  + e,, with the 
ei independent N(0, 0.152). The regression function f (.) is piecewise constant with f (t)= 

0 for 0 < t <0.5 and f( t )  = 1 for 0.5 < t < 1. The sample size is n = 100 and the ti are 
equally spaced. Three large outliers are added to the data, and are displayed in Fig. l(a) 
and Fig. 2(a). The results below show that Sampling Scheme 2.1 converges quickly, 
whereas Sampling Scheme 2.3, and hence also Sampling Scheme 2.2, converges so slowly 
as to be impractical. 
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Fig. 1. Sampling Scheme 2.1. (a) shows the signal f ( t )  with the generated data and 
the Markov chain Monte Carlo estimate of f(t);  outliers are indicated by squares. 
(b) shows the iterates of 02. (c) shows the iterates of 

iterates of z2. 
5'.
 (d) shows the first 1000 

Sampling Schemes 2.1 and 2.3 were run for a variety of starting values for 02, X and 
K; a starting value is not required for z2 as it is the first variable generated. Figure 1 shows 
the results for a particular run of Sampling Scheme 2.1 using a warm-up period of 5000 
iterations followed by a sampling period of 5000 iterations. The starting values are o2 = 
1, K = ((1, 1)' . . . ,(1, 1)')' and xi =E ( x i I Y,K, 02, z2 = 1) for i = 1, . . . ,n. Figure 1 shows 
the function estimates for the sampling period, and the iterates of 02 and 2', on a log 
scale, for both the warm-up and the sampling periods. Figure 2 shows the corresponding 
results for a particular run of Sampling Scheme 2.3. The warm-up and sampling periods, 
as well as the starting values, are the same as for Fig. 1. 

From Fig. 1, Sampling Scheme 2.1 appears to converge after about 200 iterations. Similar 
results were obtained for other arbitrary starting values, suggesting that the results shown 
in Fig. 1 represent the whole posterior distribution and not just a local mode. The function 
estimates in Figs. 1 and 2 are quite different, showing that Sampling Scheme 2.3 did not 
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Fig. 2. Sampling Scheme 2.3. (a) shows the signal f ( t )  with the generated data and 
the Markov chain Monte Carlo estimate of f ( t ) ;  outliers are indicated by squares. 

(b) shows the iterates of a'. (c) shows the iterates of 22. 

converge even after 10 000 iterations. We found that for other arbitrary choices of starting 
values Sampling Scheme 2.3 did not converge within a reasonable number of iterations. 

Remark 3.1. A version of Sampling Scheme 2.3 with t-distributed errors for both the 
observation and state equations was also run and difficulties with convergence similar to 
those reported above were again encountered. 

4. CHANGEPOINT PROBLEMS IN TIME SERIES 

4.1. Introduction 
Sampling Scheme 2.1 is now applied to a biomedical change point model discussed by 

Gordon & Smith (1990). For this model Sampling Schemes 2.2 and 2.3 are reducible. 
There are many other change point problems to which Sampling Scheme 2.1 applies, 
including the models discussed by Harrison & Stevens (1976), Shumway & Stoffer (1991), 
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Hamilton (1989), and Chapters 11 and 12 in West & Harrison (1989). Our results can 
also be extended to handle outliers and level shifts for autoregressive moving-average 
models. 

4.2. Piecewise linear signal with change points 
Gordon & Smith (1990) model kidney function in patients who had recently undergone 

kidney transplant. The level of kidney function is indicated by the rate at which chemical 
substances are cleared from the blood, and the rate can be inferred indirectly from measure- 
ments on weight-adjusted serum creatinine. Gordon & Smith argue on physiological 
grounds that if kidney function is stable then the response series varies about a constant 
level; if the kidney function is improving with constant growth then the response series 
should decay roughly linearly, and the reverse is true if the kidney function decays at a 
constant rate. About 5% of the observations are subject to error due to mistakes in data 
transcription, equipment malfunction or blood contamination. The series also experiences 
jumps in its level due to dialysis treatment. To capture all these effects Gordon & Smith 
model weight-adjusted reciprocal serum creatinine concentration, yi, by 

with pi the level, and pi the slope, at time i. A rejection episode is indicated by Pi-, <0 
and pi >0. The errors ei, ali and a,i are all independent N(0, 0,). Gordon & Smith allow 
the indicator vector (K,,, K,,, K,,) to take the four values ( l , 0 ,  O), (1,90, O), (1,0,60) and 
(100,0,0), with prior probabilities 0.85, 0.06, 0.07 and 0.02 respectively. The prior for o2 
is the same as in 8 3. The indicator variable KOi takes the values 1 and 100 with the second 
value representing an observation outlier; the indicator variable Kli  takes the values 0 
and 90, with the second values representing a jump in the level; the indicator variable K,, 
takes the values 0 and 60, with the second values representing a jump in the slope. Model 
(4.1) can be expressed in state space form (2.1) with state vector xi = (pi,Pi)'. We assume 
that x, is diffuse and the Ki are independent. The error ui in the state transition equation 
is N (0, o2 I,) and 

Sampling Scheme 2.1 is irreducible. However, Kzi =0 means that Pi =Pi-, , and Pi =Pi-
means that K,, =0 almost surely, so that Sampling Schemes 2.2 and 2.3 do not converge. 
Sampling Scheme 2.1 is now applied to the data used by Gordon & Smith. Figure 3 shows 
the results for a particular run with both warm-up and sampling periods of length 1000. 
The starting values are 0, = 1, K = ((1,0, O), . . . ,(1,0,0))' and xi = E(xi1 Y, K, 0,). 

Figure 3(a) plots the data and the estimate of the posterior mean of the level pi. Figure 3(b) 
plots the iterates of 0, showing that the sampler appears to converge after about 200 
iterations. Figures 3(c) and 3(d) plot the posterior probabilities of a jump in the level and 
slope, respectively, and show there is a jump in the slope at about time 10 and at times 
110 and 112. Other starting values give similar results, suggesting that the sampler con- 
verged to the whole of the posterior distribution and not just a local mode. 

5. GENERATINGTHE INDICATOR VARIABLES 

5.1. An expression for p(Y I K )  
This section shows how to generate efficiently all the indicator variables in Sampling 

Scheme 2.1 in O(n) operations. For notational convenience, dependence on 0, and is 
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Fig. 3. Biomedical data using Sampling Scheme 2.1. (a) shows reciprocal creatinine 
level together with the Markov chain Monte Carlo estimate. (b) shows the iterates 
of 0'. (c) shows the estimated posterior probabilities of a mean change. (d) shows 

the estimated posterior probabilities of a slope change. 

omitted. A normal random vector is called nonsingular if it has a proper density and . . 
superscripts are used to denote subvectors of Y,  X and K,  for example Y'*J:=(yi , .. . ,yj)'. 
The distributions of xi I Y',', K',' and xi I Yi+',", K are assumed nonsingular. The next result 
expresses p(Ki Iy, K j ,  j + i )  for i = 1, . . . ,n in a form suitable for computation. 

LEMMA5.1. Suppose that for all K E X, the distributions Y I K ,  xiI Y',' and xiI Y"',", K 
are nonsingular. Then 

For i = l ,  . . . , n-1 ,  
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For i =n, 


Proof To obtain (5.1), 


Using this result, 

Equation (5.1) follows from (5.4) on noting that p(Y1,'I K 1 , ' ) ~ p ( y i l  Y1"-l, K1"). It is 
straightforward to obtain equations (5.2) and (5.3). 

The following notation is used below. Let 

To generate K,, it is necessary to evaluate (5.1) for each value of Ki. This requires comput- 
ing p(yi I IK?, Pi, Si, Pill,i, Sill,i, Pili+l,n and Sili+l,n for each value of ylsi-l, K1,'), p ( ~ ' + ~ , "  
i. The terms pi and Si are obtained from (2.1). The terms p(yiI Y1,'-l, K1,'), pil l , i  and Sill , i  
are obtained from p i - l l l , i - l  and Si- l l l , i - l  using one step of the Kalman filter, e.g. 
Anderson & Moore (1979, p. 105). It is more difficult to obtain efficiently the terms 
p(Yi+""l K),  pili+l,n and S i l i+ l ,n .  We now outline how these terms may be obtained and 
what the difficulties are. Conditionally on K, the joint distribution of x,, . . . ,x, is Gaussian 
and xi is Markov, so that p(xi I K )  =p(xi ( x i + l ,  K).  Thus, conditionally on K, xi = 

p i+ lx i+ l+ i i i+l,  where 

a n d ~ ( i i ~ + , l ~ ) = p ~ - - ~ ~ + , p ~ + , , s o  K1,i+l.Thus,thatFi+.,,Di+, a n d E ( ~ ~ + , l ~ ) d e p e n d o n  
for each value of Ki,  it is necessary in general to run the Kalman filter backwards for j = 

n,. . . , i to compute p(Yi+l,"I K) ,  p i l i+ l ,n  and Sili+,,,.  This results in an O(n2) algorithm 
for generating the Ki ,  which is impractical for Markov chain Monte Carlo because the 
indicator variables are generated many times. 

Section 5.2 shows how to evaluate (5.1) for all values of Ki  and i = 1 , . . . ,n in O(n) 
operations when the Fi matrices are nonsingular. Further details of the algorithm, and a 



discussion of the case when both the transition matrices and the distribution of xi I Y'si, K',' 
are singular, are given in a technical report available from the authors. 

5.2. Backward state space model and algorithm 
To evaluate the right side of (5.1), the terms p(yiI Y','-', K1,', pill,i) and Sill , i  in (5.1) 

are obtained for each value of Ki  from pi-lll,i- and Si- using one step of the 
Kalman filter. To evaluate the composite term p(xi, Yi+'," 1 K)/p(xi 1 K1,i) a 'backward' 
state space model is constructed whose joint distribution is similar to that of the original 
state space model (2.1). Given the indicator variables K, the backward model is defined 
by 

where FBi= F,:'. The sequence eBi (i = 1, . . . ,n) is independent normal with E(eBi) =E(ei) 
and var(eBi) =var(ei). The sequence uBi (i = 1, . . . ,n) of normal random vectors is indepen- 
dent with E(uBi) = -F;'E(ui) and var(uBi) =F;' var(ui)(F:)-'. The distribution of xB, 
initialising the backward recursions can be specified arbitrarily by the user; however, we 
take x,, diffuse, that is x,, -N(0 ,cl,) with c +  a,as this choice greatly simplifies the 
computation. Below, densities of the forward state space model (2.1) are written as p(.) 
and densities of the backward state space model are written as p,(.). The shorthand 
notation pB(xi) and pB(xi,", Yi+',") is used to mean the density pB(xBi) evaluated at 
xBi=xi and the density pB(Xhn, Y?',") evaluated at ~2 =Xi," and Y p  ',"= Y"'," res-
pectively. Whenever there is ambiguity in the notation, we write pB(xBi =xi) and 
p B ( ~ i g=xi,,, yFg+l,n= yi+l.n). 

It follows from Ansley & Kohn (1985) that 

PB(xBi, YF',, 1 Yp1,"lK; c)K):= lim C - * ~ ~ , ( X , ~ ,  
C'a, 


is finite and positive. By the construction of the backward state space model, 
PB(XBI,Y~'+'," I K )  is independent of K1si. With some algebra it can be shown that 

where 

ai:= Jim E(xBi I Y? = Yi+',", K; c), Xi:= lim {var(xBiI YF1," = Yi+',", K; c)-'1. 
C'a, C' a, 


The constants of proportionality in (5.5) and (5.6) are independent of K1,' and, by construc- 
tion, so are ai and Xi. For i = 1, : .  . ,n, the terms ai and Ci are obtained by running the 
modified Kalman filter backward. The right side of (5.1) is proportional to 

and the integral can be evaluated by completing the square in the exponent of the 
integrand. 

The following algorithm generates K,, . . .,K, in O(n) operations. 

Algorithm 5.1 

Step 1. Run the modified Kalman filter backwards for i = n, . . . , 1 and calculate ai 
and Xi. 
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Step 2. For i = 1, . . . , n: 
Step 2.1: For each value of K i :  

Step 2.1.1: Run the Kalman filter one step forwards t o  calculate p(yi I yl"-l, K1, ' ) ,  
pi11,i and  sill,!from pi-111,i-I and  s i - ~ l ~ , i - ~ .  

Step 2.1.2: Evaluate (5.1) and  (5.3) using the output  of Step 1 and  Step 2.1.1. 

Step 2.2. Calculate the normalising constant and  generate K i .  

Step 2.3. Run the Kalman filter one step forwards t o  calculate pil l , iand  S i l l , i .  
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APPENDIX1 
Sampling from reduced conditionals 

Sampling Scheme A, described below, shows how to construct Markov chain Monte Carlo 
schemes that group variables together in a more flexible way than the Gibbs sampler. It is used 
to show that Sampling Scheme 2.1 is invariant. 

Suppose we wish to sample from the distribution n(Z) = n(Z,, . . . ,Z,). We assume, for simplicity, 
that Z E % I ,  but the result applies to more general settings. We use n to denote corresponding 
marginal and conditional distributions. The Markov chain Monte Carlo approach is to construct 
a Markov chain 2[O1, Z[ll, ZI2], . . , that is n-invariant, n-irreducible and aperiodic. By Tierney 
(1994), the distribution of Z['] converges to n as t -+z.Let 

{fl(Z),f-l(Z)>, {fi(Z)>f-2(Z))> . . . ,{fk(Z)>f-k(Z)) 

define k different partitions of the variables Z,, . . . ,Z, into 2 subsets such that each variable Z j  
appears in at least one of f,(Z), . . . ,fk(Z) and it is possible to generate from the conditional 
distributions n{Zl f-i(Z)).  We consider Markov chains that generate Z['+'], given Z['], from 
Sampling Scheme A which is now described. 

Sampling Scheme A. 
Step 1. Set zO = ZIt1. 
Step 2. For i = 1, . . . ,k, generate z' from n{ZI f-'(Z) =f-.i(zi-l)). 
Step 3. Set Z['+ l1= zk. 

Let Q(ZIO1, A) = pr(Z[llE A /ZIO1) denote the transition kernel of the Markov chain resulting from 
Sampling Scheme A. 

LEMMAAl.1. The transition kernel Q is n-invariant; that is n(A) = JQ(Z, A)z(dZ) for all measur- 
able sets A. 

The proof is straightforward. 
Sampling Scheme A includes the Gibbs sampler and the substitution sampling algorithm of 

Gelfand & Smith (1990) as special cases. The Gibbs sampler corresponds to the case where each 
variable Z j  appears in exactly one of f,(Z), . . . ,f,(Z); the substitution sampling algorithm corre- 
sponds to the case where each variable Z j  appears in exactly one of f-,(Z), . . . ,f-,(Z). Our 
motivation for considering Sampling Scheme A is to try to use reduced conditional distributions 
whenever possible. Gelfand & Smith (1990, p. 401) derive a different sampling scheme that uses 
reduced conditional distributions. It can be shown, however, that their sampling scheme does not 
ensure n-invariance. 



Lemma Al.1 is now used to show that Sampling Scheme 2.1 is invariant to p(X, K, 02, z2) Y). 
For a given value of the indicator vector K, it follows from the definition of G that G =HIX, 
where the matrix H, is n x mn and is of rank n. To simplify notation, the dependence of H, on K 
is not shown. There exists a matrix H2 such that (H;,H;)' is nonsingular; let G2:=H2X. Then 
Sampling Scheme 2.1 is equivalent to the following sampling scheme. 

Generate from: 
(i) p(G2, z2 1 Y, G, K, 02), 

(ii) p(X, Ki I Y, Kj, j + i, 02, z2) for i = 1, . . . ,n, 
(iii) p(X ) Y, K, 02, z2), 
(iv) p(02I Y, X, K, z2). 

In (i) it is unnecessary to generate G,, and in (ii) it is unnecessary to generate X. Invariance follows 
from Lemma Al.1. 

APPENDIX2 
Proof of Lemma 2.1 

Appendix 1 shows that Sampling Scheme 2.1 has invariant distribution p(X, K, 02, z2 1 Y). The 
aperiodicity and irreducibility results in Lemma 2.1 follow from Lemma A2.1 below. For any K, 
I? E X,  let 

be the one-step transition kernel for Sampling Scheme K. Let 
n 

Q(K,I? I Y, 02, z2):= nP(RiI Rj, j < i, Kj, j > i, Y, 02, z2). (A2.2) 
i = l  

Let Z:=(X, 02, z2) and denote the iterates of Sampling Scheme 2.1 by 

Let Az cRz = iRrnXnx %+ x %+ and define the one-step transition kernel for Sampling Scheme 2.1 
by 

Q{(Z, I?), (Az, I?)) :=pr(ZU+'] E A,, K ~ + ' ]=R )Y, ZLn =Z, KU1 = R). 

For any one-step transition kernel Q, let Qr be the r step transition kernel. 

LEMMAA2.1. Suppose that 

Then Q*(K, I?) >0 if and only if Q* {(Z, K), (Az, R)} >0. 

Proof. Showing that Qr(K, R)> 0 if Qr {(Z, I?), (A,, R)) >0 is straightforward. We now prove 
that Qr {(Z, K), (Az, R)} > 0 if Q*(K, I?) > 0. 

Without loss of generality, we can consider sets Az of the form Az =Ax x Aa2 x A72, where 
Ax c !XrnXn, and A72 c8'. Suppose that Q(K, I?)>0.Aa2 c8' 


The result is first obtained for r = 1. We can show that 


Q{(Z, K), (Az, R)} = SA, p(dz2I Y, G, K, a2) 
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The inequality Q(K,I? / >0 is deduced from (A2.1), (A2.2), and Assumption 2 in 5 2. TheY, 02, T ~ )  
inequalities 

are obtained from (A2.3) and Assumptions 1, 2 and 3 in 4 2. Substituting into (A2.4) gives 
Q{(z, K), (A,, I?))>0 as  required. 

Now suppose the result is true for i = 1, .  . . ,r and  Qr+'(K, I?)>0. This implies that  there exists 
K' E X such that  Qr(R, Kr) >0 and Q(Kr,I?)>0. Note  that  pr(Z E Rz, Kr 1 Y) =p(Kr ( Y) >0. 
Applying the inductive hypothesis gives 

QrC(z, (Qz, Kr)) >0, >0.QC(Z, Kr), (A,, ~ 1 )  
Thus, 

as  required. 
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